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Abstract

To capture biomedical phenomena more
deeply, it is required to extract relations

that are more complex than binary rela-

tions. To extract such complex relations,

the BioNLP’09 shared task provided com-

plex events; binding and regulation were pro-
vided as complex relations. To improve the

biomedical event extraction systems, finding
these complex events automatically is impor-
tant; thus, we focus on the extraction of the

complex events. In this paper, we propose
an automatic event extraction system, which
contains a model for complex events, by solv-
ing a classification problem with rich features.

Our complex event detector performed better
than the top system (in the shared task), and in
overall performance, our system outperformed
the top system.

Introduction

}@is.s.u-tokyo.ac.jp

fer (Pyysalo et al., 2007) and GENIA (Kim et al.,
2008), have been proposed. The BioNLP’09 Shared
Task (Kim et al., 2009)recently provided common
and consistent task definitions, data sets, and evalu-
ation. In the shared task, there are simple events and
complex events. Whereas the simple events are bi-
nary relations, the complex events are complex rela-
tions, and the events consist of more than one binary
relation. Bindings can represent the events including
multiple proteins, and regulations can represent the
events among events and proteins with representing
their causality and direction. These complex events
are much more informative than simple events, and
these information are important in modeling biolog-
ical systems, e.g. pathways.

In this paper, we propose a system with a focus
on extracting complex events. Our system gener-
ally follows the hierarchy of the system by@pe et
al. (2009), which was the top system in the shared
task. By solving a new classification problem, our

gystem constructs a model for extracting the com-

lex events using rich features. As an evaluation
ult, with the model, our complex event detector

ical phenomena. Relations needed to be extracté%lsh ¢ ; better than th tem in find
automatically from within enormous numberofpub-!S Snown fo periorm betlerthan the system In find-
pg complex events, and in overall performance, our

lished papers. Most researchers in the field d ) )
Biomedical Natural Language Processing (BioNL ystem is better than the system. We also display the

have focused on extracting binary relations, inclu results of the error analysis, which revealed several

ing protein-protein interactions (PPIs) (Airola et al_,problems that needed to be resolved.
2008; Miwa et al., 2009) and disease-gene associ8- Related Works
tions (DGAs) (Chun et al., 2006).

Binary relations are not sufficient for captur-In the BioNLP'09 Shared Task (Kim et al., 2009),
ing biomedical phenomena deeply; thus, there is there were three subtasks: finding core events (Task
growing need for more detailed and complex rela- ihyp/mww-  tsujiiis.s.u-tokyo.ac.jp/
tions. For this purpose, two large corpora, BiolnGENIA/SharedTask/
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Figurel: Flow of event &traction. Proteins are provided. A trigger detector first find triggers with their classes. An
event edge detector then finds edges, some of which are simple events. A complex event detector then combines edges
to construct complex events.

1), finding the secondary arguments (like locatiofinding events. The system treated complex events
and sites) (Task 2), and recognizing speculatioas event instances and classified the complex events
and negation (Task 3). Events consist of five siminstead of treating them as the combinations of the
ple events (Genexpression, Transcription, Pro- edges, although they treated complex events without
tein_catabolismPhosphorylation, and Localization) considering the dependencies among the events. The
and four complex eents(Binding, Regulation, Pos- system performed well in finding binding events, be-
itive_regulation, and Negativeegulation). A sim- cause the system treated a complex event as an in-
ple event is amevent including only a single pri- stance, and because the system used features known
mary theme protein, and a complex event is an evetu be effective for the extraction of PPIs that are re-
including multiple primary theme and cause argukated to binding events (Miwa et al., 2009).

ments (proteins and events).

3 Event Extraction System
Our system targets the Task 1, and the goal of the

task is to identify events with their types, textualOur event extraction system basically follows the hi-
triggers, and primary theme and cause argumengyarchy of Turku System; trigger detection, edge de-
The textual triggers are tokens which represent tHection, and complex event detection. Instead of ap-
events. We will explain two related systems particplying rules for extracting complex events, our sys-
ipated on the task. Bjne et al. (2009) introduced tem solves a new classification problem for com-
one system, which was the best performing systeplex events, and construct a new model for extract-
in the task. We will refer to the system as Turkung complex events. Figure 1 exemplifies the flow
System. The system extracted events with a hiepf the event extraction. All modules solve classi-
archical way, and our system follows the hierarchyication problems to construct models. The differ-
of the system. The system first found triggers, theances between our system and Turku System are in
tried to extract the event edges, and ultimately conthe features including the parsers and the additional
bined the edges sharing the same triggers to extrdeatures, the classification problems including the la-
complex events with a rule-based module. Saetre kels and the problem separation, and the machine
al. (2009) introduced another system. The systekgarning based complex event detection.

treated complex events with a classifier, which is In this section, we will explain about our system
similar to our system. The system is also a hieraincluding these differences. We first introduce clas-
chical system, and the system found triggers firssifiers and their settings in Section 3.1. Then, we
but the system was different from Turku System irexplain our preprocessing method in Section 3.2.
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ad sem_head e Token has a big letter
» A, B, || and » B and

arg arg arg arg . arg

Tokenhasa first letter of the sentence

Token is in the trigger dictionary

. I S . ) e Token has a number
Figure2: Modification of coordination structure in predi-

cate agumentstructures produced by Enju. The semantig
head (senhead)of the phrase including a coordination is e Token s in a protein

mowedto coordinating phrase, argument names are cor| N-grams (n=1, 2, 3, 4) of characters
verted to “arg” instead of “argl” and “arg2” and the same
level tokens are moved as the arguments of the coordingt
ing phrase.

e Token has a symbol

e Base form

e Token is after ‘-’

e Entries (e.g. part-of-speech (POS), lexical entry)| of
token in the outputs of parsers

Lastly, we present three modules with problems to
be solved: trigger detector in Section 3.3, event edge

detector in Section 3.4, and complex event detector ® Vertex walks and their sub-structures
in Section 3.5. e Edge valksand their sub-structures

Figure3: Features for tokens.

N e N-grams of dependencies (n=2, 3, 4)

3.1 Classifier e N-grams of words (base form + POS) (n=2, 3, 4)
For the construction of our event extraction system, « N-grams of consecutive words (base form + PQS)
we solve the multi-class classification problems an representing governor-dependent relationships (=1,
multi-label classification problems. We use one-vst 2,3)

rest support vector machines (SVMs) for solving  ® Lengths of paths
the§e prob'lems (Fan et al., 2008). We also fit a Slq:_igure4: Features for the shortest paths (SPs) between
moid function to the outputs by SVMs to calculatetWo entities (SP-Features).

the confidences of the examples (Platt, 1999).

|

3.2 Preprocessing files), which show equivalent protein mentions. If

All of the sentences in the data set are parsed usifige gold events in the training data set contain the
two parsers: a deep parser Enju 2.3.1 (Miyao et akquivalent proteins, we create all equivalent events
2008) and a dependency parser GDep betal (Sagagemove inconsistent negative examples, and gain
and Tsujii, 2007). We use the predicate argumemhore positive examples. Considering the test data
structures (PAS) by the deep parser, along with theet setting, we remove the events that are sub-events
dependency structures by the dependency parser. diother events.
lessen the effect of the inconsistency among the ar- . .
guments in a coordination structure in PAS, we con3-3  Trigger Detection
vert the structures of the coordinations into the flaor trigger detection, we need to find two types
structures, as shown in Figure 2, for the deep parsef triggers: one is the trigger of a trigger-protein
We constructed a trigger dictionary by extractingelation (TP-T), and the other is the trigger of a
all of the triggers normalized by the parsers. Thisrigger-trigger relation (TT-T). For the detection of
dictionary is used for detecting triggers in Table 1these two types of triggers, we constructed two ma-
and is also used for finding the triggers which arehine learning systems. One system (TP-T detector)
substrings of a word segmented by the parsers. Toainly aims at extracting TP-T, while the other sys-
find these triggers, we segment a word by splitting item (TT-T detector) aims at extracting TT-T. Since
with ’-" if the following conditions are satisfied: (i) the TT-T detector requires the information of trig-
the word is not in the trigger dictionary, (ii) the word gers, we first train the TP-T detector, and then train
includes ’-’, and (iii) more than one of the resultingthe TT-T detector using the outputs of the TP-T de-
words are in the dictionary. tector. This problem separation is different from that
We use the “equiv”’ annotation in the data set (aih Turku System, although the detail of their separa-
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Type Features

Token Token features in Figure 3
Two words from candidate Token features in Figure 3 ofavd with dependencies from candidate
in parser output N-grams(n=2) of dependencies

N-grams(n=2, 3) of words (base form + POS)

N-grams(n=2, 3, 4) of dependencies and words
Threewordsaroundcandidate| N-grams(n=1,2, 3, 4) of words

Shortespaths SP-featureq Figure 4 between candidate and the clopesteins
Lengthsof paths between candidate and proteins

Table 1: The features of a Trigg€andidatdor a TP-T (Trigger of Trigger-Protein relation) Detector

Type Features

Token confidencg Confidencegor all event classes by BP-T detector

Shortespaths SP-featurefn Figure 4 between candidate and the ottilesestcandidates
by TP-T detector for all event classes

Table 2: The additional Features of egger Candidate for a TT-T (Trigger of Trigger-Trigger relation) Detector

tion approach is not open. teins). An edge contains an event trigger node, and

The trigger detectors target all words in the datan argument terminal node, which is a trigger or a
sets. The detectors both try to classify all of thgrotein. By this edge detection, we can find simple
words into some event classes, including a negavents, which have only one argument.
tive event class (to extract event trigger words). As We solve two separate classification problems:
the labels of a word in the classifications, the eventigger-trigger edge detection and trigger-protein
classes of gold triggers surrounding a word are useatige detection. We use all regulation events as one
(e.g. Binding). Words are used as positive examplas/ent class for the edge detection and the following
if they have more than one target label, and otheromplex event detection; the combinations of event
words are used as negative examples. We extradfhsses and edge types (theme or cause) are used as
rich features to represent the words, as shown in Téhe labels of edges (e.g. Binding:Theme). All de-
ble 1. For the TP-T detector, we extract, in additected triggers (detected by the TT-T detector in Sec-
tion to the same features for the trigger detection ition 3.3) are used, and we create positive and nega-
Turku System, the shortest path features between ttige examples from the edges among the triggers and
event trigger candidate and the closest proteins (mamed entities. We extract features of an event edge
the parser output) for including the information ofcandidate for edge detection as shown in Table 3.
supporting proteins. The shortest path features coRer the features, in addition to the features for the
tain the features for event edge detection in Turkadge detection in Turku System, we use the confi-
System, and their several additional n-grams andkences of terminal nodes by trigger detection. We
substructures as shown in Figure 4, which were usediso add the shortest path features between the ar-
by Seetre et al. (2009). As features for the TT-T degument trigger in trigger-trigger edge node and the
tector, we add two types of features to the featuredosest proteins to add the information of supporting
in the TP-T detector as shown in Table 2. One typproteins to the features.
is the confidences (for all event classes) of the event For trigger-trigger edges, the latter terminal node
trigger candidate predicted by the TP-T detector; theust be in another edge. The edges were checked
other type is the shortest paths between the evemcursively, and unacceptable edges were removed
trigger candidate and the closest trigger for all eventntil all edges met the appropriate condition.
classes detected by the TP-T detector. )

3.5 Complex Event Detection

3.4 Event Edge Detection Complex events can be represented by finding the
For edge detection, we select event edges from eddasst combinations of event edges that are detected
among detected triggers and named entities (proy the edge detector in Section 3.4. To find the
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Type Features

Each terminal node Token features in Figure 3 of terminabde

Confidencedor all event classes by FT detector

Threewords around the edge pair N-grams(n=1, 2, 3, 4) of words

Shortespaths SP-featurein Figure 4 between terminal nodes

SP-featuref Figure 4 between the argument triggerdthe closest proteins

Table 3: The features of an EvefitigeCandidate for an Edge Detector

Type Features

Eachevent edge Edgefeatures in Table 3

All pairs among arguments Edgefeatures in Table 3 except shortesths
betweeran argument trigger and the closest proteins

All edges including event trigger Edgefeatures in Table 3

outside of eents
All pairs between argument proteins apdedgefeatures in Table 3
their closest proteins ihinding

Table 4: The features of a Complexd&ht Candidate for a Complex Event Detector

appropriate combinations, we construct a complearguments, relations between triggers and outer
event detection system. Turku System combined thgoteins, and relations between arguments and
edges with rules, and their rules could capture theuter nodes. The outer nodes (proteins) are nodes
majority of the appropriate combinations. Anothel(proteins) that are not included in the event candi-

possible approach for finding the appropriate combdate. The features are a combination of the features
nations is a machine learning based approach. This Table 3 for several edges, and the features are
approach can automatically construct models frordesigned to remove inappropriate event candidates.
the training data, and can find combinations missethe first relations are used to remove candidates
by the rule-based system. We construct classificéhat contain non-related arguments, and the second
tion models for the complex event detection. In thigind third relations are used to remove candidates
approach, events are selected from event candidatas finding edges that should be included in the

constructed by combining event edges. candidates, and more appropriate combinations of

We solve two separate classification problemgvent edges.
(Binding, Regulations) for four complex event
classes. We treat all regulations as one event claés
(like the edge detection). For each problem, thga 1 Evaluation Settings
event class and the connected terminal node typwe

. evaluated the performance of our system by us-
(event or protein) are used as the labels of complex . .
events (e Re ulationS'Theme-Event'Causfan-g the evaluation scriptfor the development data
9. 9 ' ' Set and the evaluation systéror the test data set.

Protein, Blndlng.Th_eme Proteln.Thgme I:’rOte'n)The script and the system are provided by the shared
We then create positive and negative examples )
S ask organizers. Errors were also analyzed on the de-

from the combinations of detected event edges.
velopment data set.

We design features in consideration of the edges Liblinear-javé (Fan et al., 2008) was used as the

inside and outside of the events; the arguments of . . .
o . one-vs-rest SVMs explained in Section 3.1. Our sys-
inside edges should interact each other, and the . e

. : .Iém contains many classification problems, and tun-
arguments of outside edges should not interact wit

the arguments of inner edges. We extract features *http://iwww-  tsuji.is.s.u-tokyo.ac.jp/
of a complex event candidate for complex even@Eg\'h'g‘/sﬂhared:as_'_‘_/qown'Ct’al‘(’s-smm'/

. . . P/IWWW-TSUJIILIS.S.U-10KyO0.ac.]p.
detection as shown in Tablg 4,_ usmg_ the featurgENI A/SharedTask/eval-test shiml
extractor for the edge detection in Section 3.4. The 4xp:/mww.bwaldvogel.de/

features contain three relations: relations betweeinlinear-java/

Evaluation
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Development Data Sef] Test Data Set Turku (Test Data Set)
Event Class recall prec. fscore recall prec. fscore recall prec. fscore
Geneexpression | 78.65 79.49 79.07| 68.70 79.87 73.86| 69.81 78.50 73.90
Transcription 65.85 71.05 68.35 54.01 60.66 57.14| 39.42 69.23 50.23
Proteincatabolism | 95.24 90.91 93.02| 42.86 75.00 54.55| 42.86 66.67 52.17
Phosphorylation | 85.11 68.97 76.19| 84.44 69.51 76.25| 80.74 74.66 77.58

Localization 71.70 82.61 76.77| 47.13 86.32 60.97| 49.43 8190 61.65
=[SVT-TOTAL]= 77.28 7794 77.61] 65.31 76.44 70.44| 6421 7745 70.21
Binding 50.81 47.55 49.12| 52.16 53.08 52.62| 40.06 49.82 44.41
==[EVT-TOTAL]== | 69.14 68.09 68.61| 62.33 70.54 66.18| 58.73 71.33 64.42
Regulation 36.69 46.62 41.06| 28.87 39.81 33.47| 2543 38.14 30.52

Positiveregulation | 43.92 51.92 47.59| 38.05 4832 4257| 38.76 48.72 43.17
Negativeregulation | 38.78 43.93 41.19| 35.88 47.22 40.78| 35.36 43.46 38.99
==[REG-TOTAL]== | 41.65 49.40 45.19| 3593 46.66 40.60| 35.63 45.87 40.11
==[ALL-T OTAL]== | 54.05 58.69 56.27| 48.62 58.96 53.29| 46.73 58.48 51.95

Table 5: Approximate Span Matching/Approximate Recuriatchingon Development Data Set, Test Data Set, and
Test Data Set with Turku System.

Simple  Binding Regulation Al marizes the comparison of our result with the result
Ours 7044 52.62(65.18) 40.60 (46.72) 5829 1 1;rk; System

Turku 70.21 44.41(58.40) 40.11(46.83) 51.95 _ _
Our system is comparable to Turku System in
Table 6: Comparison of our result with thesultby finding simple events and regulations, and our sys-
Turku System on Test Data Set in F-score. F-scorqgm performed much better than the system in find-
in parentheses show the result of the Event Decompﬂﬁg binding events. In overall performance, our sys-

s!t|on/ Approximate Span Matching/Approximate Faecur'tem outperformed the system in the shared task.
sive Matching.

In the complex event detection, our classification
approach is better than the rules in Turku System as

ing thresholds for each problem takes up much coni2dicated in Table 6; the loss in event composition
putational cost. We used the same settings for all & our approach is less than that by the rules.

the problems. The one-vs-rest SVMs need to solve For binding events, the F-score is much better
many unbalanced classification problems. To eagkan other systems that were submitted to the shared
the problem, we balanced the positive and negatiask on the test data set. The performance is better
examples by putting more weight on the negative exer the test data set than for the development data
amples. To have a selection of as many confideset with respect to binding. This is partially because
examples as possible, we selected examples with ttfee evaluation script do not consider the “equiv” an-
confidences more than 0.5, in addition to the exanpotation as shown in Section 3.2. The script can
ples with the most confident labels. The C-valuesutput lower score than the evaluation system. The
were set to 1.0. Please note that this setting is diffeevent decomposition results implies that the addi-
ent from Turku System, which tuned the C-value$ional features is useful for finding binding events
and thresholds for all their detectors. This paramSeetre et al., 2009). The loss in event composition
eter tuning is left as future work, and this will beshows that our complex event detector is useful for

discussed in Section 5. finding complex binding events. The correct combi-
nations of arguments are selected by using our rich
4.2 Performance feature vector.

Table 5 shows the performance of our system on For regulation events, the F-score on the develop-
the development data set produced by the evaluatioment data set decreased about 2% when we set the
script, the performance on the test data set producéueshold for the complex events to zero. This set-
by using the evaluation system, and the performantieg without the threshold is the same as the rules
of Turku System on the test data set. Table 6 sunin Turku System. The result of this setting indicates
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__Cause\Missing Type | Trigger | Event no training instances. Some triggers did not appear
Missing theme and/or cause 9 10 in the training data set. We may be able to dig

Coreferences/Exemplification 10 7 . . .
No training instance 7 . some of the triggers by using other resources, like

Ambiguity in event classes 7 - variations of terms, to find such instances. Seven
Binding (de)composition - 6 errors were caused by the ambiguity in the event
SF‘fa'f'meraC;:O” g - classes for clues. For example, the word “induc-
rslen?é?enig] 3 5 tion” can be a genexpression, transcription, or pos-
Regulation hierarchy - 2 itive_regulation. In these errors, the system could
Hiddensubject/object - 2 not disambiguaté¢he event classes, and so the sys-
Threshold 19| 10 tem answered them as different types. These er-
Total 61 39

rors also include a few difficult cases, which can
Table 7: Error Classification among 100 Missinglse e ambiguous for the annotators (like the ambigu-
Negatives on the Development Data Set. 61 triggers welity between regulation and positive/negative regu-
missing, and 39 events were missing. lation). Three errors include self interactions, like
“transfection,” which can be regulation events with-
o _ out other triggers or proteins in the shared task data
that, in finding regulation events, our system couldet. Three errors are caused by parse problems, with
not produce the comparable results with the systepp_attachment problems. Three errors contain in-
in the level of the edge detection. This weaknesgrence problems. The other 19 errors were mostly
in finding edges is also seen in the event decompgaysed by the threshold.
sition results in Table 6. Our system could perform |, -ases where events are missing, 39 missing
comparable to Turku System in the level of the eventy o5 \were found. Seven errors were caused by
detection, and the complex event detector may al$Qyreferences. 10 regulation events were not found
improve the system. However, the complex every missing themes and/or causes. Six errors were
detector did not drastically affect finding regulation. ,seq by the wrong composition of edges in com-
events. This is the case because most of the causfly pinding events. Two errors contain inference
events could not be found by the edge detector, andohlems. Two errors occurred because hidden sub-
be_cause the threshold for the edgg detection was tRR:ts or objects of triggers could not be resolved by
strict. Causes are not easy to find, because mQsi; system. Two regulation events, including the
downstream events are selected as causes in regyyses were missed because our system had some

lation events, and we need to resolve the hierarchyic ity in resolving the event hierarchy explained
of events for finding causes. in Section 4.2.

4.3 Error Analysis ) .
y 5 Discussion

For the further improvement and practical use of the
event extraction system, an improvement in the reA drawback of our system is in the dependencies
call is necessary. Table 7 summarizes the analysis @fnong the parameters to be tuned. A parameter tun-
100 missing false negatives. ing considering for the event edge detector and the
61 triggers were missing from among 100 errordrigger detector was done in Turku System, but the
10 errors include coreferences/exemplification prolparameter tuning for our systems is more complex.
lems between the trigger and the theme or causks our system, the complex event detector depends
and the distance from the trigger to protein wasn the event edge detector, and the event edge de-
far in these cases. The problems include pronoutector depends on the trigger detector. In addition
anaphora, and apposition. In nine regulation events) these dependencies, since some regulation events
the themes and causes were not found as triggedgpend on other events, it is difficult to find optimal
even though the events have only event classes parameters for regulations. Regulations are different
their arguments. Finding these events without clugsom other events; they can have the other events as
is difficult. Seven errors were missing because airguments, and can have causes. For treating reg-
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ulations more appropriately, one possible approadvaluate the performance of our system considering
is to find the regulation events after finding otherthe event classes without the triggers for a more gen-
events and simple regulation events. Thresholds ageal analysis of our event extraction system. This
also the parameters in our system. The cut uncesvaluation can then make clear the issues that need
tain triggers and edges include many events to baore focus. Considering this evaluation policy, we
found, and some of them can be found by the contan think of other approaches to find events; finding
plex event detection. To improve the recall, one posvent types including proteins first instead of trig-
sible approach is to use confidence effectively withgers is a possible approach.
out thresholds, although how to use confidence ap- For the shared task evaluation system, we ob-
propriately in machine learning is not trivial. served that the recall tended to be lower in the test
For the event extraction, the analysis in Secdata set than in the development data set. To avoid
tion 4.3 illustrated many types of NLP problemstuning the recall for the system and compare the
From the analysis, 71% of the errors are related tevent extraction systems from different points of
missing triggers. In finding both the triggers andview, we need more evaluation criteria than just the
events, coreferences are included as a major errerscore. We can use AUC (area under the ROC
type, and directly or indirectly play a large part[receiver operating characteristic curve) used in the
of the missing trigger problems. Coreferences inevaluations of recent PPI extraction systems (Airola
crease the distance between a trigger and the argt-al., 2008; Miwa et al., 2009).
ments. Coreferences also cause errors in findin _
PPIs (Miwa et al., 2009), and we need to focus of Conclusion

resolving them for finding biomedical relations. | this paper, we proposed an event extraction sys-
The shared task data sets contain two problemgmy, which mainly focuses on extracting complex
need to be avoided for the construction of more consyents, Our complex event detector performed bet-
sistent event extraction systems. ter than the rule-based detector in the top system,
One problem involves the selection of the tarynq the proposed system performed better than the
get proteins and events (Kim et al., 2009). Th@yher systems in the BioNLP'09 Shared Task data
shared task data sets were made from the GENI4st. \we also analyzed false negatives on the devel-
corpus (Kim et al.,, 2008). By the selection, Som@pment data set, and we showed that the missing
meaningless or incomplete events were left in thgjgqers caused 71% of errors, and that coreferences

shared task data sets. Some events were miSSiR}\%reamajor problem. Our system will be integrated
the events should be between regulation events aﬁﬂo U-compare (Kano et al., 2009).

the causal events for representing the hierarchy of g5sed on the error analysis, we need to integrate
events. This problem may be reduced by using the coreference resolution system. The coreferences
GENIA corpus instead of the shared task data sefgere are the combination of many problems, includ-
or by removing these events from the shared tagkq the pronoun, anaphora, and apposition. We will
data set, by using some rules. continue to analyze errors further, to determine the
The other problem is the annotation inconsistencp‘mmemS that need to be focused on to improve the
in triggers. Annotations for some triggers can bgeneral event extraction system: further, we need to
ambiguous, and the policy for the selection of thgjetermine the problems caused by the shared task
description is not strictly defined (Kim et al., 2008)-setting. Focusing on the former problems would fur-

The evaluation scripts ease this problem in the evalher improve the general event extraction system.
uation, but this type of annotation inconsistency can

confuse classifiers. Trigger detections should bAcknowledgments
helpful for finding events in learning and prediction
but detecting triggers is less important than findin

event classes as the results of an event extractQr. Network Proiect (MEXT. J d Sci
Therefore, more weight should be placed on wha enome Network Project ( , Japan), and Sci-

event classes involved the proteins. We can try t%nt'f'c Research (C) (General) (MEXT, Japan).
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