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Abstract

To capture biomedical phenomena more
deeply, it is required to extract relations
that are more complex than binary rela-
tions. To extract such complex relations,
the BioNLP’09 shared task provided com-
plex events; binding and regulation were pro-
vided as complex relations. To improve the
biomedical event extraction systems, finding
these complex events automatically is impor-
tant; thus, we focus on the extraction of the
complex events. In this paper, we propose
an automatic event extraction system, which
contains a model for complex events, by solv-
ing a classification problem with rich features.
Our complex event detector performed better
than the top system (in the shared task), and in
overall performance, our system outperformed
the top system.

1 Introduction

Relations among biomedical entities (i.e. proteins
and genes) are important in understanding biomed-
ical phenomena. Relations needed to be extracted
automatically from within enormous number of pub-
lished papers. Most researchers in the field of
Biomedical Natural Language Processing (BioNLP)
have focused on extracting binary relations, includ-
ing protein-protein interactions (PPIs) (Airola et al.,
2008; Miwa et al., 2009) and disease-gene associa-
tions (DGAs) (Chun et al., 2006).

Binary relations are not sufficient for captur-
ing biomedical phenomena deeply; thus, there is a
growing need for more detailed and complex rela-
tions. For this purpose, two large corpora, BioIn-

fer (Pyysalo et al., 2007) and GENIA (Kim et al.,
2008), have been proposed. The BioNLP’09 Shared
Task (Kim et al., 2009)1 recently provided common
and consistent task definitions, data sets, and evalu-
ation. In the shared task, there are simple events and
complex events. Whereas the simple events are bi-
nary relations, the complex events are complex rela-
tions, and the events consist of more than one binary
relation. Bindings can represent the events including
multiple proteins, and regulations can represent the
events among events and proteins with representing
their causality and direction. These complex events
are much more informative than simple events, and
these information are important in modeling biolog-
ical systems, e.g. pathways.

In this paper, we propose a system with a focus
on extracting complex events. Our system gener-
ally follows the hierarchy of the system by Björne et
al. (2009), which was the top system in the shared
task. By solving a new classification problem, our
system constructs a model for extracting the com-
plex events using rich features. As an evaluation
result, with the model, our complex event detector
is shown to perform better than the system in find-
ing complex events, and in overall performance, our
system is better than the system. We also display the
results of the error analysis, which revealed several
problems that needed to be resolved.

2 Related Works

In the BioNLP’09 Shared Task (Kim et al., 2009),
there were three subtasks: finding core events (Task

1http://www- tsujii.is.s.u-tokyo.ac.jp/
GENIA/SharedTask/
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Figure1: Flow of event extraction. Proteins are provided. A trigger detector first find triggers with their classes. An
event edge detector then finds edges, some of which are simple events. A complex event detector then combines edges
to construct complex events.

1), finding the secondary arguments (like location
and sites) (Task 2), and recognizing speculation
and negation (Task 3). Events consist of five sim-
ple events (Geneexpression, Transcription, Pro-
tein catabolism,Phosphorylation, and Localization)
and four complex events(Binding, Regulation, Pos-
itive regulation, and Negativeregulation). A sim-
ple event is anevent including only a single pri-
mary theme protein, and a complex event is an event
including multiple primary theme and cause argu-
ments (proteins and events).

Our system targets the Task 1, and the goal of the
task is to identify events with their types, textual
triggers, and primary theme and cause arguments.
The textual triggers are tokens which represent the
events. We will explain two related systems partic-
ipated on the task. Björne et al. (2009) introduced
one system, which was the best performing system
in the task. We will refer to the system as Turku
System. The system extracted events with a hier-
archical way, and our system follows the hierarchy
of the system. The system first found triggers, then
tried to extract the event edges, and ultimately com-
bined the edges sharing the same triggers to extract
complex events with a rule-based module. Sætre et
al. (2009) introduced another system. The system
treated complex events with a classifier, which is
similar to our system. The system is also a hierar-
chical system, and the system found triggers first,
but the system was different from Turku System in

finding events. The system treated complex events
as event instances and classified the complex events
instead of treating them as the combinations of the
edges, although they treated complex events without
considering the dependencies among the events. The
system performed well in finding binding events, be-
cause the system treated a complex event as an in-
stance, and because the system used features known
to be effective for the extraction of PPIs that are re-
lated to binding events (Miwa et al., 2009).

3 Event Extraction System

Our event extraction system basically follows the hi-
erarchy of Turku System; trigger detection, edge de-
tection, and complex event detection. Instead of ap-
plying rules for extracting complex events, our sys-
tem solves a new classification problem for com-
plex events, and construct a new model for extract-
ing complex events. Figure 1 exemplifies the flow
of the event extraction. All modules solve classi-
fication problems to construct models. The differ-
ences between our system and Turku System are in
the features including the parsers and the additional
features, the classification problems including the la-
bels and the problem separation, and the machine
learning based complex event detection.

In this section, we will explain about our system
including these differences. We first introduce clas-
sifiers and their settings in Section 3.1. Then, we
explain our preprocessing method in Section 3.2.
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Figure2: Modification of coordination structure in predi-
cate argumentstructures produced by Enju. The semantic
head (semhead)of the phrase including a coordination is
movedto coordinating phrase, argument names are con-
verted to “arg” instead of “arg1” and “arg2” and the same
level tokens are moved as the arguments of the coordinat-
ing phrase.

Lastly, we present three modules with problems to
be solved: trigger detector in Section 3.3, event edge
detector in Section 3.4, and complex event detector
in Section 3.5.

3.1 Classifier

For the construction of our event extraction system,
we solve the multi-class classification problems and
multi-label classification problems. We use one-vs-
rest support vector machines (SVMs) for solving
these problems (Fan et al., 2008). We also fit a sig-
moid function to the outputs by SVMs to calculate
the confidences of the examples (Platt, 1999).

3.2 Preprocessing

All of the sentences in the data set are parsed using
two parsers: a deep parser Enju 2.3.1 (Miyao et al.,
2008) and a dependency parser GDep beta1 (Sagae
and Tsujii, 2007). We use the predicate argument
structures (PAS) by the deep parser, along with the
dependency structures by the dependency parser. To
lessen the effect of the inconsistency among the ar-
guments in a coordination structure in PAS, we con-
vert the structures of the coordinations into the flat
structures, as shown in Figure 2, for the deep parser.

We constructed a trigger dictionary by extracting
all of the triggers normalized by the parsers. This
dictionary is used for detecting triggers in Table 1,
and is also used for finding the triggers which are
substrings of a word segmented by the parsers. To
find these triggers, we segment a word by splitting it
with ’-’ if the following conditions are satisfied: (i)
the word is not in the trigger dictionary, (ii) the word
includes ’-’, and (iii) more than one of the resulting
words are in the dictionary.

We use the “equiv” annotation in the data set (a2

• Token has a big letter

• Tokenhasa first letter of the sentence

• Token is in the trigger dictionary

• Token has a number

• Token has a symbol

• Token is in a protein

• N-grams (n=1, 2, 3, 4) of characters

• Base form

• Token is after ‘-’

• Entries (e.g. part-of-speech (POS), lexical entry) of
token in the outputs of parsers

Figure3: Features for tokens.

• Vertex walks and their sub-structures

• Edge walksand their sub-structures

• N-grams of dependencies (n=2, 3, 4)

• N-grams of words (base form + POS) (n=2, 3, 4)

• N-grams of consecutive words (base form + POS)
representing governor-dependent relationships (n=1,
2, 3)

• Lengths of paths

Figure4: Features for the shortest paths (SPs) between
two entities (SP-Features).

files), which show equivalent protein mentions. If
the gold events in the training data set contain the
equivalent proteins, we create all equivalent events
to remove inconsistent negative examples, and gain
more positive examples. Considering the test data
set setting, we remove the events that are sub-events
of other events.

3.3 Trigger Detection

For trigger detection, we need to find two types
of triggers: one is the trigger of a trigger-protein
relation (TP-T), and the other is the trigger of a
trigger-trigger relation (TT-T). For the detection of
these two types of triggers, we constructed two ma-
chine learning systems. One system (TP-T detector)
mainly aims at extracting TP-T, while the other sys-
tem (TT-T detector) aims at extracting TT-T. Since
the TT-T detector requires the information of trig-
gers, we first train the TP-T detector, and then train
the TT-T detector using the outputs of the TP-T de-
tector. This problem separation is different from that
in Turku System, although the detail of their separa-
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Type Features
Token Token features in Figure 3
Two words from candidate Token features in Figure 3 of wordwith dependencies from candidate
in parser output N-grams(n=2) of dependencies

N-grams(n=2, 3) of words (base form + POS)
N-grams(n=2, 3, 4) of dependencies and words

Threewordsaroundcandidate N-grams(n=1,2, 3, 4) of words
Shortestpaths SP-featuresin Figure 4 between candidate and the closestproteins

Lengthsof paths between candidate and proteins

Table 1: The features of a TriggerCandidatefor a TP-T (Trigger of Trigger-Protein relation) Detector

Type Features
Token confidence Confidencesfor all event classes by aTP-T detector
Shortestpaths SP-featuresin Figure 4 between candidate and the otherclosestcandidates

by TP-T detector for all event classes

Table 2: The additional Features of a TriggerCandidate for a TT-T (Trigger of Trigger-Trigger relation) Detector

tion approach is not open.
The trigger detectors target all words in the data

sets. The detectors both try to classify all of the
words into some event classes, including a nega-
tive event class (to extract event trigger words). As
the labels of a word in the classifications, the event
classes of gold triggers surrounding a word are used
(e.g. Binding). Words are used as positive examples
if they have more than one target label, and other
words are used as negative examples. We extract
rich features to represent the words, as shown in Ta-
ble 1. For the TP-T detector, we extract, in addi-
tion to the same features for the trigger detection in
Turku System, the shortest path features between the
event trigger candidate and the closest proteins (in
the parser output) for including the information of
supporting proteins. The shortest path features con-
tain the features for event edge detection in Turku
System, and their several additional n-grams and
substructures as shown in Figure 4, which were used
by Sætre et al. (2009). As features for the TT-T de-
tector, we add two types of features to the features
in the TP-T detector as shown in Table 2. One type
is the confidences (for all event classes) of the event
trigger candidate predicted by the TP-T detector; the
other type is the shortest paths between the event
trigger candidate and the closest trigger for all event
classes detected by the TP-T detector.

3.4 Event Edge Detection

For edge detection, we select event edges from edges
among detected triggers and named entities (pro-

teins). An edge contains an event trigger node, and
an argument terminal node, which is a trigger or a
protein. By this edge detection, we can find simple
events, which have only one argument.

We solve two separate classification problems:
trigger-trigger edge detection and trigger-protein
edge detection. We use all regulation events as one
event class for the edge detection and the following
complex event detection; the combinations of event
classes and edge types (theme or cause) are used as
the labels of edges (e.g. Binding:Theme). All de-
tected triggers (detected by the TT-T detector in Sec-
tion 3.3) are used, and we create positive and nega-
tive examples from the edges among the triggers and
named entities. We extract features of an event edge
candidate for edge detection as shown in Table 3.
For the features, in addition to the features for the
edge detection in Turku System, we use the confi-
dences of terminal nodes by trigger detection. We
also add the shortest path features between the ar-
gument trigger in trigger-trigger edge node and the
closest proteins to add the information of supporting
proteins to the features.

For trigger-trigger edges, the latter terminal node
must be in another edge. The edges were checked
recursively, and unacceptable edges were removed
until all edges met the appropriate condition.

3.5 Complex Event Detection

Complex events can be represented by finding the
best combinations of event edges that are detected
by the edge detector in Section 3.4. To find the
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Type Features
Each terminal node Token features in Figure 3 of terminalnode

Confidencesfor all event classes by TT-T detector
Threewords around the edge pair N-grams(n=1, 2, 3, 4) of words
Shortestpaths SP-featuresin Figure 4 between terminal nodes

SP-featuresin Figure 4 between the argument triggerandthe closest proteins

Table 3: The features of an EventEdgeCandidate for an Edge Detector

Type Features
Eachevent edge Edgefeatures in Table 3
All pairs among arguments Edgefeatures in Table 3 except shortestpaths

betweenan argument trigger and the closest proteins
All edges including event trigger Edgefeatures in Table 3
outside of events
All pairs between argument proteins andEdgefeatures in Table 3
their closest proteins inbinding

Table 4: The features of a Complex Event Candidate for a Complex Event Detector

appropriate combinations, we construct a complex
event detection system. Turku System combined the
edges with rules, and their rules could capture the
majority of the appropriate combinations. Another
possible approach for finding the appropriate combi-
nations is a machine learning based approach. This
approach can automatically construct models from
the training data, and can find combinations missed
by the rule-based system. We construct classifica-
tion models for the complex event detection. In this
approach, events are selected from event candidates
constructed by combining event edges.

We solve two separate classification problems
(Binding, Regulations) for four complex event
classes. We treat all regulations as one event class
(like the edge detection). For each problem, the
event class and the connected terminal node types
(event or protein) are used as the labels of complex
events (e.g. Regulations:Theme-Event:Cause-
Protein, Binding:Theme-Protein:Theme-Protein).
We then create positive and negative examples
from the combinations of detected event edges.
We design features in consideration of the edges
inside and outside of the events; the arguments of
inside edges should interact each other, and the
arguments of outside edges should not interact with
the arguments of inner edges. We extract features
of a complex event candidate for complex event
detection as shown in Table 4, using the feature
extractor for the edge detection in Section 3.4. The
features contain three relations: relations between

arguments, relations between triggers and outer
proteins, and relations between arguments and
outer nodes. The outer nodes (proteins) are nodes
(proteins) that are not included in the event candi-
date. The features are a combination of the features
in Table 3 for several edges, and the features are
designed to remove inappropriate event candidates.
The first relations are used to remove candidates
that contain non-related arguments, and the second
and third relations are used to remove candidates
by finding edges that should be included in the
candidates, and more appropriate combinations of
event edges.

4 Evaluation

4.1 Evaluation Settings

We evaluated the performance of our system by us-
ing the evaluation script2 for the development data
set and the evaluation system3 for the test data set.
The script and the system are provided by the shared
task organizers. Errors were also analyzed on the de-
velopment data set.

Liblinear-java4 (Fan et al., 2008) was used as the
one-vs-rest SVMs explained in Section 3.1. Our sys-
tem contains many classification problems, and tun-

2http://www- tsujii.is.s.u-tokyo.ac.jp/
GENIA/SharedTask/downloads.shtml

3http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/SharedTask/eval-test.shtml

4http://www.bwaldvogel.de/
liblinear-java/
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Development Data Set Test Data Set Turku (Test Data Set)
Event Class recall prec. fscore recall prec. fscore recall prec. fscore

Geneexpression 78.65 79.49 79.07 68.70 79.87 73.86 69.81 78.50 73.90
Transcription 65.85 71.05 68.35 54.01 60.66 57.14 39.42 69.23 50.23

Proteincatabolism 95.24 90.91 93.02 42.86 75.00 54.55 42.86 66.67 52.17
Phosphorylation 85.11 68.97 76.19 84.44 69.51 76.25 80.74 74.66 77.58

Localization 71.70 82.61 76.77 47.13 86.32 60.97 49.43 81.90 61.65
=[SVT-TOTAL]= 77.28 77.94 77.61 65.31 76.44 70.44 64.21 77.45 70.21

Binding 50.81 47.55 49.12 52.16 53.08 52.62 40.06 49.82 44.41
==[EVT-TOTAL]== 69.14 68.09 68.61 62.33 70.54 66.18 58.73 71.33 64.42

Regulation 36.69 46.62 41.06 28.87 39.81 33.47 25.43 38.14 30.52
Positiveregulation 43.92 51.92 47.59 38.05 48.32 42.57 38.76 48.72 43.17
Negativeregulation 38.78 43.93 41.19 35.88 47.22 40.78 35.36 43.46 38.99
==[REG-TOTAL]== 41.65 49.40 45.19 35.93 46.66 40.60 35.63 45.87 40.11
==[ALL-T OTAL]== 54.05 58.69 56.27 48.62 58.96 53.29 46.73 58.48 51.95

Table 5: Approximate Span Matching/Approximate RecursiveMatchingon Development Data Set, Test Data Set, and
Test Data Set with Turku System.

Simple Binding Regulation All
Ours 70.44 52.62 (65.18) 40.60 (46.72) 53.29
Turku 70.21 44.41 (58.40) 40.11 (46.83) 51.95

Table 6: Comparison of our result with theresult by
Turku System on Test Data Set in F-score. F-scores
in parentheses show the result of the Event Decompo-
sition/Approximate Span Matching/Approximate Recur-
sive Matching.

ing thresholds for each problem takes up much com-
putational cost. We used the same settings for all of
the problems. The one-vs-rest SVMs need to solve
many unbalanced classification problems. To ease
the problem, we balanced the positive and negative
examples by putting more weight on the negative ex-
amples. To have a selection of as many confident
examples as possible, we selected examples with the
confidences more than 0.5, in addition to the exam-
ples with the most confident labels. The C-values
were set to 1.0. Please note that this setting is differ-
ent from Turku System, which tuned the C-values
and thresholds for all their detectors. This param-
eter tuning is left as future work, and this will be
discussed in Section 5.

4.2 Performance

Table 5 shows the performance of our system on
the development data set produced by the evaluation
script, the performance on the test data set produced
by using the evaluation system, and the performance
of Turku System on the test data set. Table 6 sum-

marizes the comparison of our result with the result
by Turku System.

Our system is comparable to Turku System in
finding simple events and regulations, and our sys-
tem performed much better than the system in find-
ing binding events. In overall performance, our sys-
tem outperformed the system in the shared task.

In the complex event detection, our classification
approach is better than the rules in Turku System as
indicated in Table 6; the loss in event composition
by our approach is less than that by the rules.

For binding events, the F-score is much better
than other systems that were submitted to the shared
task on the test data set. The performance is better
for the test data set than for the development data
set with respect to binding. This is partially because
the evaluation script do not consider the “equiv” an-
notation as shown in Section 3.2. The script can
output lower score than the evaluation system. The
event decomposition results implies that the addi-
tional features is useful for finding binding events
(Sætre et al., 2009). The loss in event composition
shows that our complex event detector is useful for
finding complex binding events. The correct combi-
nations of arguments are selected by using our rich
feature vector.

For regulation events, the F-score on the develop-
ment data set decreased about 2% when we set the
threshold for the complex events to zero. This set-
ting without the threshold is the same as the rules
in Turku System. The result of this setting indicates
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Cause\Missing Type Trigger Event
Missing theme and/or cause 9 10

Coreferences/Exemplification 10 7
No training instance 7 -

Ambiguity in event classes 7 -
Binding (de)composition - 6

Self interaction 3 -
Parse problem 3 -

Inference 3 2
Regulation hierarchy - 2

Hiddensubject/object - 2
Threshold 19 10

Total 61 39

Table 7: Error Classification among 100 Missing False
Negatives on the Development Data Set. 61 triggers were
missing, and 39 events were missing.

that, in finding regulation events, our system could
not produce the comparable results with the system
in the level of the edge detection. This weakness
in finding edges is also seen in the event decompo-
sition results in Table 6. Our system could perform
comparable to Turku System in the level of the event
detection, and the complex event detector may also
improve the system. However, the complex event
detector did not drastically affect finding regulation
events. This is the case because most of the causal
events could not be found by the edge detector, and
because the threshold for the edge detection was too
strict. Causes are not easy to find, because most
downstream events are selected as causes in regu-
lation events, and we need to resolve the hierarchy
of events for finding causes.

4.3 Error Analysis

For the further improvement and practical use of the
event extraction system, an improvement in the re-
call is necessary. Table 7 summarizes the analysis of
100 missing false negatives.

61 triggers were missing from among 100 errors.
10 errors include coreferences/exemplification prob-
lems between the trigger and the theme or cause;
and the distance from the trigger to protein was
far in these cases. The problems include pronoun,
anaphora, and apposition. In nine regulation events,
the themes and causes were not found as triggers,
even though the events have only event classes as
their arguments. Finding these events without clues
is difficult. Seven errors were missing because of

no training instances. Some triggers did not appear
in the training data set. We may be able to dig
some of the triggers by using other resources, like
variations of terms, to find such instances. Seven
errors were caused by the ambiguity in the event
classes for clues. For example, the word “induc-
tion” can be a geneexpression, transcription, or pos-
itive regulation. In these errors, the system could
not disambiguatethe event classes, and so the sys-
tem answered them as different types. These er-
rors also include a few difficult cases, which can
be ambiguous for the annotators (like the ambigu-
ity between regulation and positive/negative regu-
lation). Three errors include self interactions, like
“transfection,” which can be regulation events with-
out other triggers or proteins in the shared task data
set. Three errors are caused by parse problems, with
PP-attachment problems. Three errors contain in-
ference problems. The other 19 errors were mostly
caused by the threshold.

In cases where events are missing, 39 missing
errors were found. Seven errors were caused by
coreferences. 10 regulation events were not found
by missing themes and/or causes. Six errors were
caused by the wrong composition of edges in com-
plex binding events. Two errors contain inference
problems. Two errors occurred because hidden sub-
jects or objects of triggers could not be resolved by
our system. Two regulation events, including the
causes, were missed because our system had some
difficulty in resolving the event hierarchy explained
in Section 4.2.

5 Discussion

A drawback of our system is in the dependencies
among the parameters to be tuned. A parameter tun-
ing considering for the event edge detector and the
trigger detector was done in Turku System, but the
parameter tuning for our systems is more complex.
In our system, the complex event detector depends
on the event edge detector, and the event edge de-
tector depends on the trigger detector. In addition
to these dependencies, since some regulation events
depend on other events, it is difficult to find optimal
parameters for regulations. Regulations are different
from other events; they can have the other events as
arguments, and can have causes. For treating reg-
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ulations more appropriately, one possible approach
is to find the regulation events after finding other
events and simple regulation events. Thresholds are
also the parameters in our system. The cut uncer-
tain triggers and edges include many events to be
found, and some of them can be found by the com-
plex event detection. To improve the recall, one pos-
sible approach is to use confidence effectively with-
out thresholds, although how to use confidence ap-
propriately in machine learning is not trivial.

For the event extraction, the analysis in Sec-
tion 4.3 illustrated many types of NLP problems.
From the analysis, 71% of the errors are related to
missing triggers. In finding both the triggers and
events, coreferences are included as a major error
type, and directly or indirectly play a large part
of the missing trigger problems. Coreferences in-
crease the distance between a trigger and the argu-
ments. Coreferences also cause errors in finding
PPIs (Miwa et al., 2009), and we need to focus on
resolving them for finding biomedical relations.

The shared task data sets contain two problems
need to be avoided for the construction of more con-
sistent event extraction systems.

One problem involves the selection of the tar-
get proteins and events (Kim et al., 2009). The
shared task data sets were made from the GENIA
corpus (Kim et al., 2008). By the selection, some
meaningless or incomplete events were left in the
shared task data sets. Some events were missing;
the events should be between regulation events and
the causal events for representing the hierarchy of
events. This problem may be reduced by using the
GENIA corpus instead of the shared task data sets,
or by removing these events from the shared task
data set, by using some rules.

The other problem is the annotation inconsistency
in triggers. Annotations for some triggers can be
ambiguous, and the policy for the selection of the
description is not strictly defined (Kim et al., 2008).
The evaluation scripts ease this problem in the eval-
uation, but this type of annotation inconsistency can
confuse classifiers. Trigger detections should be
helpful for finding events in learning and prediction,
but detecting triggers is less important than finding
event classes as the results of an event extractor.
Therefore, more weight should be placed on what
event classes involved the proteins. We can try to

evaluate the performance of our system considering
the event classes without the triggers for a more gen-
eral analysis of our event extraction system. This
evaluation can then make clear the issues that need
more focus. Considering this evaluation policy, we
can think of other approaches to find events; finding
event types including proteins first instead of trig-
gers is a possible approach.

For the shared task evaluation system, we ob-
served that the recall tended to be lower in the test
data set than in the development data set. To avoid
tuning the recall for the system and compare the
event extraction systems from different points of
view, we need more evaluation criteria than just the
F-score. We can use AUC (area under the ROC
[receiver operating characteristic curve) used in the
evaluations of recent PPI extraction systems (Airola
et al., 2008; Miwa et al., 2009).

6 Conclusion

In this paper, we proposed an event extraction sys-
tem which mainly focuses on extracting complex
events. Our complex event detector performed bet-
ter than the rule-based detector in the top system,
and the proposed system performed better than the
other systems in the BioNLP’09 Shared Task data
set. We also analyzed false negatives on the devel-
opment data set, and we showed that the missing
triggers caused 71% of errors, and that coreferences
were a major problem. Our system will be integrated
into U-compare (Kano et al., 2009).

Based on the error analysis, we need to integrate
a coreference resolution system. The coreferences
here are the combination of many problems, includ-
ing the pronoun, anaphora, and apposition. We will
continue to analyze errors further, to determine the
problems that need to be focused on to improve the
general event extraction system; further, we need to
determine the problems caused by the shared task
setting. Focusing on the former problems would fur-
ther improve the general event extraction system.
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