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Abstract 

The CALBC initiative aims to provide a large-scale 

biomedical text corpus that contains semantic anno-

tations for tagged named entities of different kinds.  

The generation of this corpus requires that the an-

notations from different automatic annotation sys-

tems are harmonized.  

In the first phase, the annotation systems from 5 

participants (EMBL-EBI, EMC Rotterdam, NLM, 

JULIE Lab Jena, and Linguamatics) were gathered. 

All annotations were delivered in a common anno-

tation format that included concept ids in the 

boundary assignments and that enabled comparison 

and alignment of the results.   

During the harmonization phase, the produced re-

sults from different systems have been integrated 

into a single harmonised corpus (“silver standard” 

corpus) by applying a voting scheme.  We give an 

overview of the processed data and the principles 

of harmonization – formal boundary reconciliation 

and semantic matching of named entities.  Finally 

all submissions of the participants have been evalu-

ated against the silver standard corpus.  We found 

that species and disease annotations are better stan-

dardised amongst the partners than the annotations 

of genes and proteins.  

The raw corpus is now available for additional 

named entity annotations. Part of the annotated 

corpus will be made available later for a public 

challenge. We expect that we can improve corpus 

building activities both in terms of the numbers of 

named entity classes being covered, as well as the 

size of the corpus in terms of annotated documents. 

1 Introduction
 
 

The provision of gold standard annotated data is a 

time-consuming and costly process predominantly 

due to the manual curation work. We advocate the 

notion of a “silver standard” which results from the 

harmonization of annotations provided from auto-

matic annotation systems. Different annotation 

groups deliver their meta data which, finally, is 

merged to form a compromise set.  It has been 

shown in the past that a combination of annotation 

services can deliver a final result that exceeds the 

performance of any of the included solutions 

(Smith et al., 2008).  We derive from this experi-

ment that a combination of annotation solutions 

can deliver a large scale annotated corpus suitable 

to train text mining solutions for large-scale text 

mining tasks. 

Current (biomedical) text mining experiments 

and challenges are based on relatively small corpo-

ra (usually in the order of 1,000 to 2,000 abstracts) 

in narrow sub-domains (e.g., human blood cells 

and transcription factors (Genia corpus),
1
 inhibi-

tion of cytochrome P450 enzymes and oncology 

(Penn-BioIE corpus),
2
 gene tagging and normaliza-

tion (BioCreAtIvE I, II; Smith et al., 2008; Morgan 

                                                           
1 http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/ 
2 http://bioie.ldc.upenn.edu/publications/~latest_release/data/ 
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et al., 2008),
3
 protein/gene interactions (BioCreA-

tIvE II). These restrictions are mostly due to the 

fact that the manual annotation of such corpora is 

extremely time-consuming and costly. As a result, 

the annotated corpora are too small and too nar-

rowly scoped to be useful for a large variety of 

other text mining themes and applications.  

Within CALBC, we intend to create a much 

broader scoped and more diversely annotated cor-

pus. We plan to have 150,000 Medline abstracts on 

immunology, a reasonably broad topic which is 

dealt with in more than 1M abstracts from the 18M 

abstract set in Medline, collaboratively annotated 

with 5 to 10 semantic types in the course of two 

public annotation challenges. Publicly available 

systems that we draw on are Whatizit (EBI: Reb-

holz et al., 2007), Peregrine (Erasmus Medical 

Center: Schuemie et al., 2007), GeNo (JULIE Lab, 

U Jena: Wermter et al., 2009), MetaMap (NLM: 

Aronson, 2001), Abner (U Wisconsin: Settles, 

2005), OSIRIS (U Pompeu Fabra: Bonis et al, 

2006) and TerMine (NaCTeM: Frantzi et al., 

2000). Commercial systems using NER that will be 

encouraged to contribute include Collexis, Meds-

can (Ariadne Genomics), Tessi (Language & 

Computing), Temis, MedTAKMI (IBM), Ling-

Pipe, as well as Linguamatics, a project partner. 

Besides availability and costs, differences among 

these systems include coverage (e.g., entities used 

in genomic studies vs. all biomedical entities) and 

purpose (pure NER vs. integration in a specialized 

application, such as the identification of gene-

disease relations). Hence, a performance compari-

son of these systems will be difficult to establish. 

We anticipate that a total of 1 to 2M named enti-

ty annotations will be generated by running these 

systems on the CALBC corpus. Formal document 

metadata (e.g., sentence segmentation) will be 

added to this corpus prior to release for public an-

notation. Since all these systems have different 

application scopes – some will aim for high preci-

sion, whereas others will aim for better recall – the 

integrated corpus will have a broader scope com-

pared to that of any individual system.  

Using different NERs in such a collaborative ef-

fort will inevitably require a tremendous annota-

tion integration effort and, thus, consistency issues 

will play a prominent role in corpus maintenance. 

                                                           
3 http://biocreative.sourceforge.net/biocreative_1_dataset.html and 
http://biocreative.sourceforge.net/biocreative_2_dataset.html 

The project’s focus, from a methodological pers-

pective, is to analyze the impact of various consen-

sus models for generating a “silver standard” 

corpus (SSC). No manually annotated gold stan-

dard will be supplied. Individual systems can use 

the generated SSC to obtain analysis reports com-

paring their own annotations with the SSC.  

A secondary goal of this project is to define a 

standardized format for representing the annota-

tions contributed by the participants and comparing 

them effectively. Currently, the lack of such a for-

mat hinders progress in the evaluation of NERs. 

1.1 CALBC’s “Silver Standard” approach 

The biomedical text mining research community 

has a long tradition of organizing text mining chal-

lenges (most notably the BioCreaTive I (Hir-

schman et al., 2005) and II (Krallinger et al., 2008) 

competitions) as a way to evaluate text mining 

techniques, sharing technical knowledge, and to 

improve the results from text mining systems. The 

CALBC corpus will be used to organize challenges 

where participants can download the corpus, anno-

tate it with their own text mining solutions in a 

standard format, submit the annotated corpus to a 

central server and receive an assessment of their 

results through a fully automated analysis. The 

submissions can be contributed at any time during 

the challenge’s open phase and comparative as-

sessment reports can be obtained.  At the end of 

that period, all submissions of annotated corpora 

will be used to generate the next fully annotated 

corpus which then will be used as an SSC for the 

next round of the challenge.  

The first measurable result of these challenges is 

the number of annotations contributed to the cor-

pus by the participants. This set of annotations can 

be analyzed by participant, by granularity of the 

annotation location (from individual sentences to 

groups of documents), by semantic categories (e.g., 

chemicals, proteins, diseases) and by reference 

terminology used for the annotation (e.g., using the 

Medical Subject Headings (MeSH)). 

The second measurable outcome results from 

the comparison of the annotations of any given 

system to the SSC and their integration into the 

SSC. Consensus annotations are crucial for this 

phase and can be defined as annotations provided 

by a certain number (or proportion) of systems. 

These consensus annotations can then be used as a 

surrogate gold standard (hence, “silver standard”) 
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to compute the usual precision and recall metrics 

for each system. 

Last but not the least, the organizers will make 

an effort to make the SSC available as part of the 

assessment infrastructure. This allows text mining 

system developers to automatically run their solu-

tions against the available “silver standard”.  

Where available, we will use publicly available 

gold standard annotations to assess annotations 

delivered to CALBC, and to evaluate the quality of 

the silver standard as a whole. 

2 Experimental conditions for kick-off 

In preparation for the collaborative annotation 

challenges, all institutions involved in the CALBC 

consortium conducted an experiment to test the 

feasibility of collaboratively annotating a corpus 

and comparing the annotations contributed by sev-

eral partners. The institutions are: European Bioin-

formatics Institute (EBI), Erasmus Medical Center 

(EMC), Jena University Language & Information 

Engineering (JULIE) Lab, Linguamatics (LM), and 

the National Library of Medicine (NLM). 

A small corpus (1,485 Medline abstracts) was 

created and annotated by each partner independent-

ly. This corpus prefigures the much larger anno-

tated corpus (150,000 documents) to be delivered 

as the outcome of the kick-off phase.  

2.1 Annotation guidelines 

The following principles were applied for the an-

notation of the named entities: 

 All the annotations will be based on XML, so 

that it is both machine and human readable. 

 Inline annotation is preferred, although stand-

off annotation is also supported.  

 A namespace is used to identify the concept in 

the original knowledge source. 

 The exact boundaries of the entity have to be 

specified. 

 Annotation of the largest span of text within 

the same semantic type is preferred. In the case 

of “lung cancer”, e.g., only “lung cancer” is 

annotated rather than “cancer”. This means 

that nested entities in the same semantic group 

will not be annotated (but overlapping entities 

are still allowed).   

 Given a semantic entity, if the system cannot 

decide on the identifier of that entity in a 

knowledge source all identifiers are provided. 

 

The annotation of entities was done using the e 

element that encloses the text where entity/entities 

can be found (Rebholz-Schuhmann et al., 2006). 

The entities are identified within the knowledge 

source using the id attribute in the e element. The 

identifier of a given entity in a given data source is 

composed of the namespace of the knowledge 

source (e.g., “UMLS”), the identifier of the entity 

in this source (e.g., “C0001403”), the semantic 

type and the semantic group. If multiple identifiers 

may be assigned to the same text boundary (e.g., in 

cases of ambiguity), the pipe symbol is used to 

separate them. 

<e id=”Uniprot:P01308:T028:PRGE|UMLS:C1337112: 

T028:   PRGE”>INS gene</e> 

After the entity identifier, specified above as 

(namespace:id:semantic type:semantic group), a 

colon indicates that there is a comma separated list 

of token identifiers. The following example illus-

trates this point: 

<e id=”UMLS:C0222601:T023:1,2|UMLS:C0006142:T191: 

2,3”><w id=”1”>left</w> <w id=”2”>breast</w> <w 

id=”3”>cancer</w></e> 

In this example, left breast (i.e., tokens 1 and 2) is 

identified by UMLS:C0222601:T023, while breast 

cancer (tokens 2 and 3) is identified by 

UMLS:C0006142:T191.
4
 

2.2 Evaluation procedure 

As evaluation measures for the comparison of 

named entities in the annotated corpora we use 

standard precision, recall and F-score. We employ 

two different types of boundary alignments: 

 Exact match: For each semantic group, the 

system’s assignments of the named entity 

boundaries have to match exactly the entity 

boundaries in the SSC. This evaluation is mea-

ningful in the sense that the participant has to 

achieve a high agreement concerning the 

boundaries of the entities annotated in the 

SSC. 

                                                           
4 Note that there is no concept for left breast cancer 

in the UMLS 
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 Nested match: The boundary assignments 

from the participant’s system (“evaluation 

set”) have to include the boundaries of the SSC 

(“reference set”), i.e., the boundaries in the 

evaluation set cover an equal or larger span 

than the boundary assignments from the SSC 

in addition to including the SSC assignments 

of the concept id. This evaluation is meaning-

ful in the sense that the system identifies the 

complete location of the entity corresponding 

with the semantic group. 

3 Initial experimental results 

All five partners relied on the Unified Medical 

Language System (UMLS) as a reference for the 

semantic categorization of their annotations and 

home-grown solutions for NER (e.g., for gene and 

protein name identification).  It can be expected 

that the semantic types and groups from the UMLS 

are the most commonly used categorization 

framework. Yet, alternatives can be explored 

throughout the project. 

The initial comparison discussed below is main-

ly focused on the partners EBI, EMC and NLM 

only, since they had already adapted their systems 

according to the annotation guidelines during a 

pre-project test phase. EMC delivered two types of 

annotations for the gene/protein entities.  The other 

two partners (JULIE and LM) delivered their anno-

tations at a later stage, once all the modifications to 

the annotation pipeline had been finalized and 

tested. Their contributions were incorporated in the 

harmonization phase (see Section 4.6). 

In the next subsections the results for several 

annotations are shown. From these experiments, 

the best solution for the harmonization of the cor-

pora was identified using a simple consensus mod-

el. In this consensus model, the annotations of a 

minimum of two partners had to agree on the loca-

tion of an entity (nested boundaries) and the se-

mantic type. This approach leads to a corpus with a 

large number of annotations, since these two re-

quirements put only weak restrictions on the 

agreement between the annotation systems. 

3.1 Initial annotation comparison 

The initial assessment takes into consideration two 

major parameters, viz. boundaries and their recon-

ciliation, on the one hand, and semantic type 

matching of recognized named entities, on the oth-

er hand. 

 

Formal boundaries of named entities 

The number of boundary assignments delivered 

from the three sites differed markedly (see Table 

1): 14,955 (EBI), 59,934 (EMC) and 56,585 

(NLM).  The number of semantic annotations was 

even higher, since multiple assignments could be 

rendered for a single boundary assignment: 16,142 

(EBI), 60,958 (EMC), and 88,442 (NLM).  The 

comparatively low number of annotations for the 

EBI resulted from the fact that disease annotations 

were added only at a later stage of the analysis. 

With regards to boundary assignments, 8,846 

boundary assignments formed the core of exact 

agreement between EBI (59.2%) and EMC 

(14.8%).  EBI and EMC share the same number of 

exact boundary agreements (8,846), but the percen-

tage varies since EBI annotated a smaller set of 

entities leading to a bigger percentage of its anno-

tations matching to EMC, and vice versa for EMC. 

12,294 boundary assignments from EBI are 

nested in the EMC annotations (82.2%), and a 

smaller number of annotations, only 9,340 boun-

dary assignments, from EMC are nested in EBI 

(15.6%). This shows that EBI selects narrower 

boundaries assignments for its annotations where 

the assignments are tightly coupled to the lexical 

resource. EMC exploits contextual information to 

identify genes/proteins even if the terms in the text 

deviate from the lexical resource. 
 

Reference EBI EBI EMC EMC NLM NLM 

Evaluation EMC NLM EBI NLM EBI EMC 

Boundaries 14,955 14,955 59,934 59,934 56,585 56,585 

exact  8,846 1,329 8,846 8,619 1,329 8,619 

nested  12,294 14,094 9,340 54,561 1,358 9,684 

exact [%] 59.2 8.9 14.8 14.4 2.3 15.2 

nested [%] 82.2 94.2 15.6 91.0 2.4 17.1 

Annotations 16,142 16,142 60,958 60,958 88,442 88,442 

exact 7,620 1,128 6,889 5,115 1,044 5,128 

nested 9,178 10,860 7,204 36,343 1,063 5,372 

exact [%] 51.0 7.5 11.5 8.5 1.8 9.1 

nested [%] 61.4 72.6 12.0 60.6 1.9 9.5 

 

Table 1: Comparison of different annotation solu-

tions on the initial corpus (1,500 Medline ab-
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stracts).  The annotations from one partner (“Eval-

uation”, e.g. EMC) are compared against the anno-

tations from another partner (“Reference”, e.g. 

EBI).  The comparison included the boundary as-

signments and the group assignments.  A boundary 

assignment from the evaluation set has to nest the 

boundary assignment from the reference set to be 

counted as a nested match.  The semantic group in 

the evaluation set has to be listed in the reference 

set to give a positive count (see Annotations sec-

tion). 

 

8,619 boundary assignments exactly agreed be-

tween EMC (14.4%) and NLM (15.2%), which is a 

very small number in comparison to the large set 

of annotations that was delivered from the EMC 

and NLM. 54,561 boundary assignments from 

EMC (91.0%) are nested in NLM.  Less than this, 

only 9,684 boundary assignments from NLM 

(17.1%) are nested in EMC’s data. This leads to 

the conclusion that EMC’s annotations are nested 

in NLM’s annotations, the latter using MetaMap 

(Aronson, 2001) for boundary segmentation and 

MeSH mapping. 

 

Semantic types of named entities 

In addition to the formal issue of boundary recon-

ciliation we also compared the semantic categories 

assigned to each boundary.  

7,620 semantic annotations in exact annotations 

are consistent between EBI and EMC (51.0%), and 

only 6,889 semantic annotations in exact annota-

tions are consistent between EMC and EBI 

(11.5%). It shows that EBI has only annotated a 

smaller set of semantic types in the corpus.  More 

types were added at a later stage. 

9,178 semantic annotations from EBI are in 

agreement for nested annotations with EMC 

(61.4%).  Less than this, only 7,204 semantic anno-

tations from EMC, are in agreement for nested an-

notations with EBI (12.0%). 82% of matches of 

nested boundary assignments (EMC against the 

reference EBI) yield only 61.4% of agreed seman-

tic annotations. EBI annotates a given boundary 

with several concept ids (16,142 semantic annota-

tions over 14,955 boundary assignments), whereas 

EMC assigns a single concept id (60,958 semantic 

types for 59,934 boundaries). It is evident that 

mismatches in the semantic type of the concept id 

will inevitably lead to mismatches in the alignment 

of the semantic annotations. 

The overall conclusion is that EBI’s semantic 

annotations are covered in nested annotations from 

EMC.  Accordingly, one harmonization step could 

use the nested annotations of EMC over EBI and 

could use the semantic type shared between both 

partners. This solution was chosen at a later stage 

as one of the harmonization rules. 

5,115 semantic annotations in exact annotations 

are in agreement between EMC and NLM (8.5%), 

and 5,128 semantic annotations in exact annota-

tions are in agreement between NLM and EMC 

(9.1%). This result is not surprising when taking 

into consideration that NLM uses other boundary 

assignments than EMC. 

36,343 semantic annotations from EMC are con-

tained as nested annotations of NLM (60.6%). Less 

than this, only 5,372 semantic annotations from 

NLM, are found as nested annotations of EMC 

(9.5%). Again it becomes obvious that EMC’s an-

notations are in general contained in annotations 

from NLM. 

3.2 Boundary reconciliation: Removal of 

stop words 

The differences in the boundary assignments be-

tween EMC and EBI led us to the hypothesis that 

the annotations might be due, to some degree, to 

“uninformative” words that do not modify the se-

mantic type of the annotations. We therefore re-

moved these “uninformative” stop words (e.g., 

about, every, since) from the annotations which 

should yield better normalizations. The stop words 

found at the left or the right border of the entity 

annotations were removed from the annotated 

span. If this processing step generated empty anno-

tations indicating that only stop words were con-

tained in the annotation span, the full annotation 

span was removed. The stop word removal has 

several effects. 

The overall number of boundary assignments 

remained unchanged for EBI and decreased for 

EMC (59,934 compared to 58,420, respectively) 

and NLM (56,585 compared to 54,930, respective-

ly). About 1,500 annotations in either corpus were 

composed of stop words only and so were com-

pletely removed after this reconciliation step. 

The number of agreements (exact or nested) be-

tween EBI and EMC did not change significantly 
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(less than 1% change).  The number of disagree-

ments decreased by the number of removed boun-

daries in the EMC corpus. 

The biggest improvement was seen in the 

agreement with EBI on the NLM corpus and with 

EMC on the NLM corpus. This was no surprise, 

since the stop word removal reduced the boundary 

assignments of the NLM more to the size that was 

used by EBI and EMC.  

Summarizing, the stop word removal harmo-

nized the annotations with the NLM, but did not 

much improve the harmonization between EBI and 

EMC. 

3.3 Evaluation of noun phrase boundaries 

Apart from stop word removal, we analyzed the 

compliance of the annotations with a noun phrase 

chunker. We expected that annotations that are 

embedded in well-formed noun phrases (NPs) are 

more likely to represent entities than more com-

plex syntactic structures. 

Reference NP NP NP EBI EMC NLM 

Evaluation EBI EMC NLM NP NP NP 

Boundaries 61,327 61,327 61,327 18,306 59,934 56,585 

Agreement 4,722 16,862 51,564 13,529 48,206 16,496 

Disagreem. 56,605 44,465 9,763 1,426 11,728 40,089 

Recall 0.09 0.27 0.84 0.86 0.80 0.29 

Precision 0.32 0.28 0.91 0.26 0.79 0.27 

F-measure 0.15 0.28 0.87 0.40 0.80 0.28 

 

Table 2: Comparison of the boundary assignments 

in the evaluation set against the noun phrase boun-

daries (exact match) 

The relation between the syntactic structure of 

the sentences and the identification of entities was 

also part of the analysis. The first hypothesis is that 

the chunks are placed within an annotated named 

entity boundary. To test this hypothesis, the LT-

Chunk shallow parser (Mikheev, 1996) was used to 

detect noun and verb phrases in text. As can be 

seen from Table 2, EBI and EMC annotations are 

largely contained in the NP annotation, while NLM 

ones are not. In a significant number of cases, the 

NP boundary assignment is linked to an entity that 

has not been annotated by EBI or EMC. Further-

more, the analysis shows that the NP boundaries 

often deviate from the boundary assignments of 

EBI and EMC.  This is partly due to syntactical 

structures using prepositional attachments and 

coordination that have not been considered by the 

NP chunker, but could also be the result of NP 

chunking mistakes of an imperfect NP chunker.  

3.4 Annotations for proteins and genes 

The following analysis focuses on the annotations 

that were delivered for genes and proteins with the 

intention to get an overview of the semantic nor-

malization that would be required at a later stage. 

The categorization of named entities in the se-

mantic groups proposed by (Bodenreider and 

McCray, 2003) requires revision before they can 

be used in the CALBC project. The semantic types 

“Amino Acid, Peptide, or Protein” and “Enzyme” 

are grouped in the semantic group “Chemicals & 

Drugs”.  This coarse categorization is not very 

supportive to the CALBC challenge, since the pilot 

partners and the text mining community at large 

distinguish between chemicals and proteins. On the 

other hand, the semantic group system provides a 

separate category for genes.  From an information 

extraction perspective, it is unrealistic to distin-

guish protein named entities from gene named 

entities. In conclusion, genes and proteins should 

be grouped together. The pilot partners agreed to 

use the category “CHED” for “Chemical & 

Drugs”, excluding the two before-mentioned se-

mantic types for proteins and enzymes. On the oth-

er hand, the novel category “PRGE” consists of the 

semantic group “GENE” and will include the se-

mantic types that are not anymore included in 

“CHEM”.  

 

Semantic Type Description 

T028 Gene or Genome 

T086 Nucleotide Sequence 

T087 Amino Acid Sequence 

T116 Amino Acid, Peptide, or Protein 

T126 Enzyme 

T192 Receptor 

 

Table 3: Semantic types defining the PRGE group.  

The left column lists the codes used by UMLS for 

the different semantic types described in the right 

column. 
 

In our experiment, the annotations of proteins 

and genes were compared. Annotations were se-

lected either based on the name space (using Uni-
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Prot) for the EBI annotation or on semantic types 

denoting a gene or protein (see Table 3). 
 

Table 4 shows the results of the assessment.  

Only the analysis for the nested boundary agree-

ment is shown. The agreement on the 

genes/proteins is better than the agreement overall 

(see Table 1). Obviously, the resources for the 

genes/proteins as well as the mapping of acronyms 

to the scientific literature and the assignment to 

semantic types seem to be better standardized than 

the annotation of text passages with general UMLS 

concepts. Since EBI annotates a large number of 

concept identifiers with the same span of text, it is 

again obvious that the overall performance of the 

alignment of two annotated corpora is reduced. 

Nested       

Reference EBI EBI EMC EMC NLM NLM 

Evaluation EMC NLM EBI NLM EBI EMC 

Boundaries 4,933 4,933 8,215 8,215 8,312 8,312 

Agreement 2,650 3,150 2,643 6,200 590 1,028 

Disagreem. 2,283 1,783 5,572 2,015 7,722 7,284 

Recall 0.54 0.64 0.32 0.75 0.07 0.12 

Precision 0.32 0.38 0.54 0.75 0.12 0.13 

F-measure 0.40 0.48 0.40 0.75 0.09 0.12 

 

Table 4: PRGE pair-wise comparison. The boun-

dary assignments of the evaluation set have to nest 

the boundaries from the reference set. 

3.5 Annotations for Diseases  

The semantic types selected for the analysis of dis-

eases are enumerated in Table 5: 

Semantic Types Description 

T047 Disease or Syndrome 

T191 Neoplastic Process 

T019 Congenital Abnormality 

T048 Mental or behavioral Dysfunction 

T050 Experimental Model of Disease 

T190 Acquired Abnormality 

 

Table 5: Semantic types defining the “Disease” group 
 

In Table 6 we find that the different annotations 

unveil a large agreement between EBI and EMC, 

larger than the one found with proteins and genes 

(cf. Table 4) 
 

 

 

Nested       

Reference EBI EBI EMC EMC NLM NLM 

Evaluation EMC NLM EBI NLM EBI EMC 

Boundaries 4,091 4,091 3,881 3,881 4,021 4,021 

Agreement 2,769 2,936 2,580 2,946 401 410 

Disagreement 1,322 1,155 1,301 935 3,620 3,611 

Recall 0.68 0.72 0.66 0.76 0.10 0.10 

Precision 0.71 0.73 0.63 0.73 0.10 0.11 

F-measure 0.69 0.72 0.65 0.75 0.10 0.10 

 

Table 6: Disease pair-wise comparison. Again the 

boundary assignments of the evaluation set have to 

nest the boundaries from the reference set. 

3.6 Corpus harmonization 

The objective of the harmonization is to provide a 

corpus with acceptable quality obtained by the 

combination of the annotations provided by the 

various partners. The harmonization requires an 

understanding of the annotations provided by the 

partners and described above, as well as a compar-

ison of the annotations and defining heuristics that 

can be used for harmonization.  

The heuristics used in this first harmonization 

benefitted from the experiences gathered from the 

comparison of the corpora between EBI, EMC and 

NLM. The data now includes also the annotations 

from JULIE Lab and Linguamatics (LM). All an-

notated spans of text were selected whenever the 

annotations from at least two partners were in 

agreement.  Annotations were considered to be in 

agreement, if (1) the annotations of one partner 

were the same or nested in the other partner’s an-

notation and, if (2) they both agreed on the seman-

tic type. The results from this analysis were then 

used to assess the annotations from the different 

partners against it. 

The following Tables 7, 8 and 9 show the com-

parison of the annotation sets from the different 

partners (evaluation sets) against the harmonized 

reference set for the different semantic types: 

genes/proteins (PRGEs), diseases and species, re-

spectively. The PRGE and disease group follows 

the definitions presented previously. The species 

group is defined by a subset of UMLS semantic 

types defining organisms that are not related to 

population studies. All available annotated corpora 

were assessed against the SSC. EMC provided two 

corpora, one relying on the UMLS (EMC-U) while 
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the second one is based on other resources (EMC-

O). 

 
Evalua-

tion 
 

NLM 

EMC-

U 

EMC-

O JULIE EBI LM 

Boundaries 485,260 485,260 485,260 485,260 485,260 485,260 

Agreement 328,827 344,720 357,532 230,659 310,753 348,742 

Disagreem. 156,433 140,540 127,728 254,601 174,507 136,518 

Recall 0.68 0.71 0.74 0.48 0.64 0.72 

Precision 0.80 0.85 0.90 0.74 0.75 0.58 

F-measure 0.74 0.77 0.81 0.58 0.69 0.64 

 

Table 7: SSC “Disease” nested comparison 

 

Evaluation NLM 

EMC-

U 

EMC-

O JULIE EBI LM 

Boundaries 646,971 646,971 646,971 646,971 646,971 646,971 

Agreement 461,259 261,888 443,945 309,746 322,870 291,186 

Disagreem. 185,712 385,083 203,026 337,225 324,101 355,785 

Recall 0.71 0.40 0.69 0.48 0.50 0.45 

Precision 0.53 0.77 0.51 0.82 0.62 0.68 

F-measure 0.61 0.53 0.59 0.60 0.55 0.54 

 

Table 8: SSC PRGE nested comparison 
 

Corpus NLM EMC-U 

EMC-

O JULIE EBI LM 

Boundaries 618,221 618,221 618,221 618,221 618,221 618,221 

Agreement 360,642 507,349 491,597 282,342 259,835 360,812 

Disagrem. 257,579 110,872 126,624 335,879 358,386 257,409 

Recall 0.58 0.82 0.80 0.46 0.42 0.58 

Precision 0.90 0.93 0.97 0.84 0.78 0.71 

F-meas. 0.71 0.87 0.87 0.59 0.55 0.64 

 

Table 9: SSC species nested comparison 

 

The harmonized corpus contains, for each cate-

gory, about half a million named entity boundaries 

(485,260 for Disease, 646,971 for PRGE, and 

618,221 for species. 

The evaluation of the annotations from the dif-

ferent participants shows that the participants 

achieved the best agreement with the SSC for the 

identification of species (F-measure from 0.55 to 

0.87, average is 0.71).  We assume that this result 

is due to the fact that species names are used in a 

standardized way in the scientific literature.   

For the identification of diseases, the best per-

forming annotation solutions showed lower per-

formance in comparison to the results from the 

species identification.  On the other side, the 

spread of F-measure was smaller and on average 

the performance of all systems was similar to the 

species annotation (F-measure from 0.58 to 0.81, 

average is 0.71).  Although all partners used 

UMLS as primary resource, their applied methods 

produced different results, which leads to the con-

clusion that none of the partner’s annotations fully 

agrees with the SSC.   

The results for the annotations of the PRGEs 

show the lowest performance (F-measure from 

0.53 to 0.66, average is 0.59).  The performance is 

also significantly lower than the results report from 

gene annotation competitions (BioCreative I and 

II).  It is known that the variability of the represen-

tation of PRGEs in the literature is high.  Further-

more, the participants use different solutions to 

map family names of proteins to concept ids and 

therefore chose different solutions to accept or ig-

nore such terms. 

Altogether, this analysis shows that the harmo-

nized corpus allows comparing annotation solu-

tions with different origins.   

4 Conclusions and Future work 

The production of a gold standard corpus requires 

a significant amount of manual curation work. We 

advocate the notion of a “silver standard” which 

results from the harmonization of annotations pro-

vided from automatic annotation systems. Differ-

ent annotation groups deliver their meta data 

which, finally, is merged to form a compromise 

set. 

We elaborated on this idea, and merged annota-

tions for genes/proteins, diseases and species from 

five contributing teams. Assuming, however, an 

even higher number of contributors, we certainly 

have to cope with more sophisticated consensus 

metrics than the one we used up until now (cf., 

e.g.; Rahman and Fairhurst, 2003) for a compre-

hensive discussion of combination strategies). 

Previous research work has shown that the com-

bination of annotation services can deliver results 

that are superior to any integrated solution (Smith 

et al., 2008).  Another conclusion from this work is 

that the upper limit for the gene/protein mention 

recognition could be around 90% F-measure.  The 

silver standard corpus integrates a larger number of 

semantic types.  Achieving high accuracy on all 
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semantic types seems to be difficult to reach, but 

we can also expect that the SSC enables new ap-

proaches to disambiguate all semantic types that 

are used in the same context. 

As we invite the community to contribute to this 

effort in the course of two waves of annotation 

challenges (cf. the Call for Participation @ bionlp 

list), we will certainly have to shape our ideas how 

to achieve fair consensus, how to exclude or in-

clude outliers, and, also, how to eliminate malevo-

lent contributors (spam annotations). Our 

forthcoming challenges and alignment experiments 

will show whether automatically supplying a con-

sensus-based silver standard might really constitute 

a reasonable and qualitatively acceptable ad-

vancement over manually supplied gold standards 

given their costs in terms of training and supervis-

ing human expert annotators. 
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