Comparison of methods for topic template queries in the biomedical domain

Antonio Jimeno-Yepes
European Bioinformatics Institute
Wellcome Trust Genome Campus
Hinxton, Cambridge, UK
yepes@ebi.ac.uk

Rafael Berlanga-Llavori
Dept. Computer Systems and Languages
Universitat Jaume I
Castellon, Spain
berlanga@lsi.uji.es

Dietrich Rebholz-Schuhmann
European Bioinformatics Institute
Wellcome Trust Genome Campus
Hinxton, Cambridge, UK
rebholz@ebi.ac.uk

Abstract

Topic template queries are focused on a facet of a structured user information need. Examples of these topic templates are: the role of gene G in disease D and the interaction of proteins P1 and P2. These templates allow for multiple instances and some commonalities might be found which might provide improved retrieval on unseen instance queries of a template.

In this paper, we have analyzed two possible solutions that integrate the analysis of existing results based on query reformulation and the boosting of documents based on text categorization.

We show that both approaches produce interesting results when enough example queries are provided and that the boosting of retrieved document based on text categorization has a better performance.

1 Introduction

In our work we are interested in topic template queries (TTQ). These queries are defined by a theme or subject which denotes a specific facet of related types of entities (e.g. the role of gene X in disease Y). Several instantiations of the templates are possible (e.g. the role of the APC gene in colon cancer). This setup might be useful in situations where there is a specific structured information need; e.g. researchers in the biomedical domain which are in charge of curating a database. In the next section we present the related work. Thereafter we introduce the methods we propose. Finally, we present the results and conclusions.

2 Related work

Our work is related to several approaches in IR that we briefly present in this section and compare to our problem.

Query reformulation might provide a better representation of the original user query. These techniques use the feedback obtained for each one of individual queries but do not optimize the search for unseen queries. Text classifiers build models for predefined categories (which represent a static information need). We can find techniques like scatter/gather where the documents retrieved by a search engine are organized into clusters, but which may not be relevant to the user.

Despite the variety of techniques for improving query results, there is no method that analyses the set of queries from a topic template to identify commonalities that might improve the retrieval performance of unseen queries given a topic template.

3 Methods

In this paper we compare two approaches that analyze explicit feedback in retrieval tasks for a set of queries and produce a model that improves the performance on unseen queries with the same topic template. The first approach is based on a boosting of retrieved documents according to a text categorizer that determines the relevance of the document to the topic template. The second one is a query reformulation approach.

3.1 Text categorization

This approach post-processes the result of an ad-hoc information retrieval system. A text classifier is applied on the top-n retrieved documents for a
given query and is used to boost documents that are
deemed relevant. Since the text categorizers pro-
vide a different way of estimating relevance than
the information retrieval system, the documents are
boosted to the top of the retrieved list keeping the
original rank among them. This is similar to the
work of (Ruch et al., 2003) which combines a tra-
ditional vector space model and a rule based system.
Several categorizers based on machine learning al-
gorithms (Frank et al., 2005) with different learning
bias have been compared: decision trees (J48), naïve
hayes (NB), support vector machines (SMO) and k-
nearest neighbors (K-NN). A cross-validation anal-
ysis is used to select the most adequate classifier for
the task; given the algorithm and their possible pa-
rameters.

3.2 Query reformulation
The query reformulation used in the experiments
is based on the query reformulation we proposed
in (Jimeno-Yepes et al., 2009). We have modified
our Ontology Query Model (OQM) (Jimeno-Yepes
et al., 2009) to integrate the terms related to the
topic template. These terms are selected (learnt) from
the relevance judgments provided in previous queries.
We have introduced the topic template denoted by
the relation \mathcal{R} in a linear combination:

$$P(w_i|\mathcal{C}, \mathcal{R}) = \alpha P_{CM}(w_i|\mathcal{C}) + \beta P_{R}(w_i|\mathcal{C}) + \gamma P_{Rel}(w_i|\mathcal{R})$$ \hspace{1cm} (1)

$$\alpha + \beta + \gamma = 1$$ \hspace{1cm} (2)

$P_{Rel}(w_i|\mathcal{R})$ depends only on the terminology
linked to this relation and the terminology linked to
other relations in the ontology. In the case of a richer
relation ontology the probability would as well con-
sider the occurrence of the terms in the other rela-
tions. Standard information retrieval statistics have
been used to select the candidate terms.

4 Results

4.1 Experimental setup
The configuration of the system is the same we have
used in (Jimeno-Yepes et al., 2009). The randomiza-
tion test for paired data is used to compare statisti-
cally the methods (\dagger indicates $p < 0.01$). The train-
ing queries are used to retrieve the top-50 documents
for each query. Documents are marked as positive
or negative documents according to the benchmark.
Random selection of negative documents is done to
balance both classes. 5 times 2 fold cross validation
is used to sample the set of queries for each data set
due to the size of the data sets. Global results are the
average of the results obtained for each one of the
partitions.

4.2 Data sets
We have used two data sets for our experiments. One
set considers the role of a gene in a disease and the
second one the interaction of two proteins. These
two data sets are presented in turn.

4.2.1 PGN-disease data set
We have used the 2005 TREC Genomics collec-
tion\(^1\) because there is an interest on generic top-
ics. This collection is made up of a subcollection of
Medline, around 4M documents between years 1999
and 2004, and a collection of 50 queries. Queries are
based on a topic template; i.e. the role of gene X in
disease Y. From the TREC queries we have consid-
ered 20 queries related to the topic template.

4.2.2 PPI data set
We have used the DIP database\(^2\), which deals
with protein-protein interaction on yeast and has
pointers to Medline articles. In total 260 queries
are prepared. The average number of relevant doc-
uments per query is two. The document collection
contains Medline citations till September 2004, about
15M Medline documents.

4.3 Identification of topical features results

4.3.1 PGN-disease data set results
The configuration for the PGN-disease data set
is based on the results obtained from the relevance
cleaning and refinement presented in (Jimeno-Yepes
et al., 2009). The classifier with the best F-measure
is SMO with an RBF kernel. We see a similar F-
measure is obtained with a different trade off be-
tween precision and recall based on the capacity and
the g parameter.

\(^1\)http://ir.ohsu.edu/genomics/2005protocol.html
\(^2\)http://dip.doe-mbi.ucla.edu/
As we can see in table 1, the best results are obtained with the baseline. This is because the training set does not allow finding a model that discards documents about the role of the PGN in the disease.

<table>
<thead>
<tr>
<th>TREC</th>
<th>Rel. Retr</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>747.2/1093.6</td>
<td>0.3208</td>
</tr>
<tr>
<td>Categorizer</td>
<td>747.2/1093.6</td>
<td>0.3149</td>
</tr>
</tbody>
</table>

Table 1: Refinement cleaning and categorization for PGN-disease

4.3.2 PPI data set results

The SMO classifier obtains the best F-measure result in the cross-validation analysis. The RBF kernel obtains a better performance. The method with highest recall is based on a linear kernel while the highest precision is obtained with the NB classifier.

From the list of terms identified for reformulation, there are terms that clearly denote an interaction like *interaction, binding, complex and hybrid*, terms that are related to experiments done to verify the interaction between proteins. These terms have been found relevant in a similar study by (Marcotte et al., 2001) and (Cohen et al., 2008). There are less obvious terms like *association* that have been found relevant in (Rebholz-Schuhmann et al., 2008).

In table 2, we present the result comparing the baseline methods with the modified ontology query model. The baseline methods are the co-occurrences based on cleaning and refinement (Jimeno-Yepes et al., 2009).

As we can see in table 2, both approaches perform better than the baseline. Boosting based on the text categorizer provides a better performance. This means that there are specific arrangements that the model produced by the SMO captures better than the query reformulation approach.

<table>
<thead>
<tr>
<th>PPI</th>
<th>Rel. Retr</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>189.2/317.2</td>
<td>0.1873</td>
</tr>
<tr>
<td>Categorizer</td>
<td>189.2/317.2</td>
<td>0.2387 †</td>
</tr>
<tr>
<td>Refinement</td>
<td>199.2/317.2</td>
<td>0.2140 †</td>
</tr>
</tbody>
</table>

Table 2: Baseline, categorizer and refinement for PPI

5 Discussion

We have seen that the PPI set has the largest improvement over the baseline, compared to the PGN-disease set. If we analyze the query reformulation results, we see that in the PPI data set there is a common group of features that are repeated across the different folds and this explains the improvement over the baseline.

6 Future work

The categorization result indicates that there is a relation among the features that deserves further research. In addition, a normalization of the features using an ontology or a terminological resource as reference might reduce the sparsity of the feature set.

References

